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In this study, a novel chemometric algorithm is presented to facilitate the comparison of relevant
chemical components from different herbal samples. This so-called multicomponent spectral correlative
chromatography (MSCC) is developed to detect and decide whether two chromatographic clusters
are correlated spectrally with each other. The target chromatographic cluster is first partitioned from
one herbal spectrochromatogram obtained by hyphenated chromatography. Then, a projection
operator is constructed with the principal spectral features extracted from the target to judge the
presence or absence of a spectral correlative chromatographic cluster within another herbal
spectrochromatogram. For this judgment, congruence coefficient between the original spectral vector
and its projected residual is proposed to eliminate the influences from background and noises,
especially heteroscedastic noises in the original data. The performance of the MSCC algorithm is
demonstrated on both simulated data and real data, and its advantages and disadvantages are also
discussed in some detail.
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INTRODUCTION

With the development of traditional herbal medicines and
desirable progress of relevant researches, both the compilations
of pharmaceutical attributes and the comparison of componential
distributions about herbal samples have become more and more
important, in particular for the medicinal quality assessment to
support their uses. Conventional analysis of herbal medicines
concentrated mainly on investigating single or few marker
components for their pharmaceutical efficacy and quality control.
Nevertheless, it is not enough to reveal the complexity and
synergic effect of the phytochemicals in herbal medicines and
sometimes leads to a certain biased assessment of the investi-
gated systems. As pointed out in ref1, “The quantity and quality
of the safety and efficacy data on traditional medicine are far
from sufficient to meet the criteria needed to support its use
worldwide. The reasons for the lack of research data are due to
not only to health care policies, but also to a lack of adequate
or accepted research methodology for evaluating traditional
medicine.” It is well-known that, unlike a chemically synthetic
drug with much purity, an herbal medicine may consist of many
complex phytochemicals. As a result, it becomes very difficult

or impossible in most cases to identify most of these phy-
tochemicals by means of common approaches (2-4). Thus, the
chromatographic fingerprinting (5-7) is proposed as a more
meaningful alternative to the conventional analysis. It empha-
sizes a systemic characterization of herbal samples. However,
when it comes to the comparison and evaluation of various
chromatographic fingerprints, it seems inevitable to identify the
presence or absence of the same compositions in them.
Additionally, there are many factors influencing the chromato-
graphic fingerprints of herbal medicines, such as different
collected seasons, different cultured places, different chemical
extraction methods, and even the measurement devices. There-
fore, the efficient and reasonable evaluation of the sameness
and difference among the fingerprints from different sources
becomes very important.

Fortunately, with the rapid development of analytical instru-
ments, a vast array of instruments, such as GC-MS, GC-IR,
LC-DAD, CE-MS, and LC-NMR, have appeared, which will
give us a good opportunity to fulfill the previously mentioned
task with the help of chemometric methods (8-14). The
spectrochromatograms can be obtained from such kinds of
instruments. These spectrochromatographic fingerprints contain
abundant information about the compositional spectra and

* To whom correspondence should be addressed. Tel.: 86-731-8822841.
Fax: 86-731-8825637. E-mail: yizeng_liang@263.net.

J. Agric. Food Chem. 2004, 52, 7771−7776 7771

10.1021/jf0489318 CCC: $27.50 © 2004 American Chemical Society
Published on Web 12/02/2004



chromatograms. Thus, the efficient usage of such information
to evaluate reasonably the sameness or difference among the
fingerprints becomes possible (15-19). In ref 18, a spectral
correlative chromatography (SCC) algorithm is presented to
detect same components from different spectrochromatograms,
on the assumption that the target cluster is not disturbed by
any other component, in other words, the target cluster must
be pure. However, in a real complex herbal system, some
relevant components often coelute within a same chromato-
graphic cluster, and it is beyond the detection ability of SCC.
Accordingly, multicomponent spectral correlative chromatog-
raphy (MSCC) (19) was developed to deal with such multi-
component-coeluted chromatographic clusters. It utilizes the
spectral features extracted from the target chromatographic
cluster by principal component analysis (PCA) to construct a
projection operator, which is able to annihilate the spectral
correlative information by projecting other chromatographic
clusters or spectrochromatogrms onto this operator. With this
approach, one can easily compare and reveal the sameness or
difference among different spectrochromatograms without the
necessity to acquire the pure spectra and chromatograms of some
relevant components or chemical standards existing in different
herbal samples, especially in the case that active constituents
or characteristic ingredients cannot be separated completely in
the chromatography. Extensive theory of the MSCC algorithm
(19) has recently been proposed and applied successfully to data
analysis. This work focuses on some practical application of
MSCC to complex herbal medicine data sets. The results
obtained are quite satisfactory.

MATERIALS AND METHODS

Simulated Data. Two spectrochromatographic fingerprints were
simulated to demonstrate the procedure of MSCC method, as shown
in Figure 1. The chromatographic profiles and spectra of 10 components
were generated by means of the Gaussian function, respectively. Two
four-component peak clusters, namedXtargetandYtest, were selected to

test this method. The chromatographic profiles and spectra of the
individual components are marked with 1&1′, 2&2′, 3&3′, and 4&4′,
respectively. Both homoscedastic noises with 0.2% standard deviation
of maximum intensity and heteroscedastic noises with the standard
deviations in the range of 0.2 to∼1% proportional to the corresponding
responses were superimposed to these two simulated data.

Materials. Schisandra chinensis(Turcz.) Baill. was purchased from
an authoritative pharmaceutical store and identified at the Institute of
Materia Medica, Hunan Academy of Traditional Chinese Medicine and
Materia Medica, Changsha, Hunan, China.Houttuynia cordataThunb.
samples were provided by Xingzhong Pharmaceutical Corp. Ltd. and
Yusi Pharmaceutical Corp. Ltd. of Yunnan province, People’s Republic
of China.

Extraction of the Volatile Fractions. Plant material ofS. chinensis
was dried for about 60 min at 40°C and then crushed (screen size 20
mesh) in a pharmaceutical disintegrator. Two extraction techniques were
involved: (1) according to the standard extraction method ofChinese
Pharmacopoeia(25), extracting the essential oil from traditional
medicines by use of a standard essential oil extractor and (2) extracting
the essential oil via steam distillation. About 500 g of preweighed fresh
H. cordatawas cut into fragments and soaked for 2 h with 1000 mL
of distilled water in a standard extractor at ambient temperature. Then,
the essential oil was prepared according to the standard extraction
method ofChinese Pharmacopoeia(25), as mentioned in the first
technique.

Analysis of the Volatile Fractions.A GC-17A gas chromatograph
and QP-5000 mass spectrometer from Shimadzu (Tokyo, Japan) was
employed in this study. In the analysis of the volatile fractions fromS.
chinensis, an OV-1 capillary column (30 m× 0.25 mm i.d.) was initially
held at 40°C and then linearly heated to 230°C at a rate of 5°C
min-1. The inlet temperature was kept at 210°C, and the helium carrier
gas was employed at a flow rate of 0.7 mL min-1. In the mass
spectrometer, electron impact (EI+) mass spectra were recorded at 70
eV ionization energy in full scan mode in the mass range of 20 to
∼350 amu with a 0.2 s scan-1 velocity. The ionization source
temperature was set at 230°C. In the analysis of the volatile fractions
from H. cordata, an OV-1 quartz capillary column (30 m× 0.25 mm
i.d.) was used with a split ratio of 30:1. The column temperature was
initially maintained at 50°C for 6 min and then programmed from 50
to 230°C at the rate of 10°C min-1. The inlet temperature was kept
at 280°C. Helium carrier gas was also used at a flow rate of 0.7 mL
min-1. In the mass spectrometer, the electron impact (EI+) mass spectra
were recorded at 70 eV ionization energy in full scan mode in the 30
to ∼350 amu mass ranges with 0.2 s scan-1 velocity. The ionization
source temperature was set at 250°C.

Data Analysis.All the involved programs were coded in MATLAB
5.3 environment and were executed on a Pentium III 850 (Intel) personal
computer with 256MB RAM under Microsoft Windows 98 operating
system. The library search and spectral match for chemical species were
conducted on the National Institute of Standards and Technology (NIST)
MS database containing about 107 000 compounds.

RESULTS AND DISCUSSION

Multicomponent Spectral Correlative Chromatography
for Data Analysis. Suppose that data matrixXtarget of sizem1

× n is a target chromatographic peak cluster from spectrochro-
matographic fingerprintX of one herbal sample, andY of size
m× n is another spectrochromatographic fingerprint, as shown
in Figure 1A. Moreover,X and Y are measured atn same
spectral positions. In this figure, two peak clusters, namedXtarget

(solid lines) andYtest (dotted lines), are also marked.Figure
1B,C depicts the chromatographic profiles and spectra of four
components in them, marked 1&1′, 2&2′, 3&3′, and 4&4′,
respectively.

As can be seen from them, the four components inXtarget

continually elute and partially overlap, andYtest contains the
same spectra but different chromatographic eluting profiles. The
purpose of MSCC algorithm is to detect the cluster withinY,
spectrally correlating to the clusterXtarget. To fulfill the

Figure 1. (A) Chromatograms of two simulated spectrochromatographic
fingerprints at some wavelength. (B) Chromatographic profiles of four-
component clusters Xtarget (solid lines) and Ytest (dotted lines). (C) Spectra
of clusters Xtarget (solid lines) and Ytest (dotted lines).
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requirement, the spectral features have first to be extracted from
Xtarget by means of PCA (20,21). The target clusterXtarget can
be decomposed by singular value decomposition (SVD)

whereU andV are the score and loading matrices, respectively,
andS is a diagonal matrix, which collects the square-root values
of all eigenvalues ofXtarget. The superscript T denotes the
transposition of matrix or vector. It is worth noting that the
loading matrixV collects all the spectral information ofXtarget.
If the number ofp principal components (PCs) included in the
clusterXtarget is estimated correctly, eq 1 can be rewritten

Here, the matrixE contains instrumental noises, experimental
errors, and the part of the dataXtarget not explained byp PCs.
As a result, the loading matrixV in eq 1 can be reduced to
matrix Vp that consists ofp orthonormal spectral features (i.e.,
p principal components). Subsequently, thesep extracted spectral
features are utilized to construct an orthogonal projection
operatorP

I denotes an identity matrix of the same size as matrix (VpVp
T).

Then, we project the original spectrumyj (j ) 1, ...,m) recorded
at every chromatographic point of the investigated spectrochro-
matogramY onto this operatorP, and a series of corresponding
residual vectors are obtained

yj* represents the residual of recorded spectrumyj at the
chromatographic retention timej after orthogonal projection
operation.

If the spectrumyj embodies the spectral information correlat-
ing top feature spectra ofVp, the correlative information would
be removed from the originalyj, and the Euclidean norm (rej)
of its projected residualyj* should theoretically be zero, that is

Otherwise, the Euclidean norm (rej) of its projected residual
yj* will be extremely large. In fact, the projected residual norm
(rej) can only be close to zero instead of zero because there
exist instrumental and experimental noises or errors during the
measurements. If the residuals in the chromatographic region
Ytest are merely homoscedastic noises, a minimum projection
flat where the values ofrej are close to zero should be obtained
by use of eq 5, for example, the projection result from the
simulated data inFigure 2A. However, the occurrence of
heteroscedastic noises (22,23) in real data often results in very
large Euclidean norm values (rej) at some peak positions, as
shown in the marked region inFigure 2B. Such a projection
result maybe lead to an erroneous determination that clusters
Xtarget and Ytest consist of different compositions at all. To
eliminate the influence of heteroscedastic noises, the congruence
coefficient between the original spectral vector and its projected
residual is adopted as a better alternative to eq 5

The valuesrj (j ) 1, ...,m) are in the range of 0e r e 1. The
smaller the value ofrj is, the higher the correlation betweenyj

and the feature spectra within matrixVp is. When yj falls
completely into the subspace spanned by feature spectra within
matrix Vp, the value ofrj should be zero. The congruence
efficient between the originalyj and its projected residualyj*
takes mainly the morphologic distribution of the projected
residuals into account: if the residualyj* is of noise property,
it will be orthogonal to both the spectral signal ofyj and the
spanned subspace. Thus, a projection curve aboutrj can be
obtained in the chromatographic direction of spectrochromato-
gramY (Figure 2C). Moreover, this curve has the same length
with spectrochromatogramY and contains the spectral correla-
tive information aboutY. With this correlative curve, one may
easily pick up the spectral correlative information inY to Xtarget,
and one can easily compare the sameness or difference between
two spectrochromatographic fingerprints without necessity to
obtain the pure spectra and chromatograms of each component
or reference standards in herbal samples. Consequently, this
method is named multicomponent spectral correlative chroma-
tography (MSCC) in this work.

GC-MS Data of S. chinensis. With the increasing demand
of quality control for herbal medicines, comparing the same
and different compositions among the spectrochromatograms
from different extraction methods plays an important role in
experimental researches of herbal chromatographic fingerprints.
For simple systems, this comparison can be done easily. For
complicated systems, however, seriously overlapping peaks are
often encountered. It is common that the overlapping peaks have
to be first resolved into pure chromatographic and spectral
profiles by employing some sophisticated chemometric methods
(12-14), and then this comparison becomes possible. These
methods not only undertake heavy calculation but also need
considerable experiences so as to obtain good resolution results
(26) when they are employed. Thus, the simpler method is
obviously preferable for such a quick comparison. Here, the
MSCC approach is introduced to detect the common components
in herbal samples from different extraction methods or materials
measured by chromatography, such as GC-MS and HPLC-

Xtarget) USVT (1)

Xtarget) UpSpVp
T + E (2)

P ) (I - VpVp
T) (3)

yj* ) Pyj ) (I - VpVp
T)yj (j ) 1, ...,m) (4)

rej
2 ) ||yj*||2 ) yj*

Tyj* ) (P yj)
TP yj ) yj

TP yj ) 0 (5)

r j )
yj

T‚yj*

||yj||‚||yj*||
(j ) 1, ...,m) (6)

Figure 2. (A) Projected residual Euclidean norm curve (re) from every
spectrum of spectrochromatogram Y into which homoscedastic noises
were only superimposed. (B) The projected residual Euclidean norm curve
(re) from every spectrum of Y into which homoscedastic and heterosce-
dastic noises were both superimposed. (C) The spectral correlative
chromatogram (r) from every spectrum of Y into which homoscedastic
and heteroscedastic noises were both superimposed.
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DAD; furthermore, it is not necessary to resolve individual
components into pure spectra and chromatograms.

Figure 3 shows two total ionic current (TIC) chromatograms
of S. chinensisvolatile fractions derived from different extraction
methods but measured at the same GC-MS procedure. The
general features of the two fingerprints are quite similar even
though there are some chromatographic shifts. However, seen
from them, it is difficult to conclude that the same compounds
are present in some overlapping chromatographic peak clusters
or not without any resolution, for instance, the peakXtarget

derived from extraction method 1 and corresponding chromato-
graphic cluster derived from extraction method 2.

Now, we extract the spectral features fromXtargetin the region
of 25.46 to∼25.94 min (Figure 4) with PCA. It is found that
this cluster consists of three PCs, and a projection operatorP
is constructed with these three spectral features, sayP ) (I -
V3V3

T). Then, every spectral vectoryj of spectrochromatogram
Y extracted by method 2 is projected ontoP, and a spectral
correlative chromatogram is obtained, consequently.Figure 5A
just depicts a segment of this chromatogram. A minimum flat
illustrates that the last two peaks ofY in the region of 25.55 to
∼26.00 min are spectrally correlative toXtarget, whereas the
congruence coefficients in the region of 25.45 to∼25.55 min
are very large, and the small peak in this region is excluded
from spectral correlative cluster (Figure 5B). To confirm this,
we resolved these two peak clusters. The results are shown in
Figure 6. The peak marked with 4′ (seeFigure 6B) is really
not the common component of these two clusters. More details

on them can be found in ref17. From this result, it can be
concluded that the compositions are not consistent in their
individual retention time even though the same herbal sample
is extracted by similar methods, and the MSCC algorithm allows
us to rapidly decide whether some relevant chemical components

Figure 3. TIC chromatograms of the volatile fractions of S. chinensis from different extraction methods: fingerprints X corresponding to method 1 and
Y to method 2, respectively.

Figure 4. TIC chromatogram of target cluster Xtarget in the region of 25.46
to ∼25.94 min of X.

Figure 5. (A) Amplified segment of the whole spectral correlative
chromatogram of fingerprint Y after being projected onto the spectral
feature operator of Xtarget, where the values of r reach lowest. (B) TIC
chromatogram of the tested cluster in Y correlating spectrally to Xtarget.

Figure 6. Resolved chromatographic profiles of target cluster Xtarget (A)
and the tested spectral correlative cluster (B), respectively.
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are same or not. It is possible to further evaluate which
extraction method is more advisable.

GC-MS Data of H. cordata.Besides being from the same
herbal medicine extracted by different methods, the MSCC
method can also detect spectral correlative substances in herbal
chromatographic fingerprints from different resources.Figure
7 displays two total ionic current (TIC) chromatograms ofH.
cordatavolatile fractions from different resources, the topX is
from Xingzhong Pharmaceutical Corp. Ltd., and the bottomY
is from Yusi Pharmaceutical Corp. Ltd. Because bornyl acetate
is one of critical active and characteristic constituents for quality
control ofH. cordatasamples, and it is very difficult to separate
this compound completely, the clusterXtarget where bornyl
acetate exists is selected as the investigated target. It is amplified
in Figure 8. Seen intuitively from it, this cluster consists of
two components at least. However, if only two feature spectra
extracted fromXtarget are used to constructP ) (I - V2V2

T)
and to project every spectral vectoryj of Y onto it, we achieve
an overdetermined result (see the minimum projection values
of curve 1 inFigure 9A). It can be speculated that two spectral
features seem to be not enough to characterize the whole spectral
contributions inXtarget, and there needs to be more PCs to
construct the operatorP.

More should be discussed about the estimate ofp principal
feature spectra. Ifp is too small, theVp subspace may not
adequately represent the subspace of all components in cluster
Xtarget. The value ofp should be large enough to summarize all
of the significant components within the few spectral features
but not so large that it incorporates a substantial amount of noise.
In principle, p principal feature spectra inXtarget could be
estimated, but it is difficult to correctly estimatep in practice
due to great variations in the concentration level of each
component and noise. In this study, the method named noise

perturbation in functional principal component analysis (NPF-
PCA) is employed to estimate the spectral feature number.
Factually, the number of principal feature spectra inXtargetwas
estimated to be 4 with NPFPCA, sayp ) 4. Since an explicit
description about the NPFPCA method was documented in ref
21, here it is not elaborated for the sake of brevity.

As a result of the MSCC method, a minimum flat of the
correlative chromatogram is obtained in the region 17.02 to
∼17.23 min (see curve 2 inFigure 9A), whenP ) (I - V4V4

T).
The spectral congruence coefficients in this region are close to
zero. This flat corresponds to a cluster in the fingerprintY shown
in Figure 9B. The result shows that this tested cluster is
spectrally correlative to the clusterXtargetand that they encom-
pass common chemical species. Because of the existence of
selective and zero regions of the left first component of the target
clusterXtarget and the tested cluster, one may resolve its pure
mass spectrum (Figure 10) from these two clusters with the
help of chemometric resolution methods (13,14). The similarity
match for this resolved component is conducted in the NIST
mass library. Compared with the standard mass spectra, it is
identified as bornyl acetate (C12H20O2). However, the other three
common components could not be resolved properly. MSCC
method facilitates the comparison of critical active or charac-
teristic constituents from herbal samples and further quality
assessment of samples.

Figure 7. TIC chromatograms of H. cordata volatile fractions from two
Pharmaceutical Corp. Ltds.

Figure 8. Amplified spectrochromatogram of target cluster Xtarget.

Figure 9. Amplified tested spectral correlative chromatogram with the
lowest values of r (A) and its corresponding spectrochromatographic cluster
(B).

Figure 10. Resolved mass spectra of the first component (Bornyl acetate,
C12H20O2) that the target cluster Xtarget (A) and the tested spectral
correlative cluster (B) have in common.
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Conclusion.On the basis of spectral correlation, MSCC has
attempted to detect and determine same components and to
facilitate comparison of the sameness and difference of relevant
compositions in various chromatographic fingerprints from
herbal medicine samples, especially in the case where two or
more components coelute in some chromatographic peak
clusters. The introduction of the congruence coefficient between
the original spectral vector and its projected residual can
eliminate effectively the influences from heteroscedastic noises
in original data. In addition, it is necessary to note that the
comparison of the compositions in small contents might be
beyond the ability of MSCC when the signal-to-noise ratio is
very low.
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